top of page


"Controlling Covalency and Anion Redox Potentials through Anion Substitution in Li-rich Chalcogenides"

Andrew J. Martinolich, Joshua J. Zak, Seong Shik Kim, Nicholas H. Bashian, Ahamed Irshad, David N. Agyeman-Budu, S. R. Narayan, Brent C. Melot, Johanna Nelson Weker, and Kimberly A. See


"Selective Formation of Pyridinic-Type Nitrogen-doped Graphene and Its Application in Lithium-Ion Battery Anodes"

Jacob D. Bagley, Deepan Kishore Kumar, Kimberly A. See, Nai-Chang Yeh,


25. "A Super-Oxidized Radical Cationic Icosahedral Boron Cluster"

Julia M. Stauber, Josef Schwan, Xinglong Zhang, Jonathan C. Axtell, Dahee Jung, Brendon J. McNicholas, Paul H. Oyala, Andrew J. Martinolich, Jay R. Winkler, Kimberly A. See, Thomas F. Miller III, Harry B. Gray, Alexander M. Spokoyny,

J. Am. Chem. Soc. 2020, 142, 12948-12953.

24. "Understanding the Role of Crystallographic Shear on the Electrochemical Behavior of Niobium Oxyfluorides"

Nicholas H. Bashian, Molleigh B. Preefer, JoAnna Milam-Guerrero, Joshua J. Zak, Charlotte Sendi, Suha Ahsan, Rebecca Vincent, Ralf Haiges, Kimberly A. See, Ram Seshadri, Brent C. Melot,

J. Mat. Chem. A 2020, 8, 12623-12632.

23. "Multielectron, Cation and Anion Redox in Lithium-Rich Iron Sulfide Cathodes”

Charles J. Hansen, Joshua J. Zak, Andrew J. Martinolich, Jesse S. Ko, Nicholas H. Bashian, Farnaz Kaboudvand, Anton Van der Ven, Brent C. Melot, Johanna Nelson Weker, and Kimberly A. See,

J. Am. Chem. Soc. 2020, 142, 6737-3749.

tl;dr Two isostructural alkali-rich metal sulfides - Li2FeS2 and previously unreported LiNaFeS2 - demonstrate reversible multielectron redox (>= 1.5 electrons). We probe the charge storage mechanism and find that both cationic and anionic redox contribute. In the beginning of the charge profile, the materials undergo a deintercalation-like mechanism in which Fe2+ is oxidized to Fe2+/3+. Oxidation of Fe2+ causes the Fe and S bands to rehybridize, increasing the covalency of the Fe-S correlations and pushing the S 2p states closer to the Fermi level. Subsequent oxidation occurs on the anions, (S)2-, to form (S2)2- moieties causing loss of long-range order. The anion oxidation is clearly observed in S K-edge X-ray absorption spectroscopy.

22. “Conditioning-Free Electrolyte by Minor Addition of Mg(HMDS)2”

Seong Shik Kim, Sarah C. Bevilacqua, and Kimberly A. See,

ACS Appl. Mater. Interfaces 2020, 12, 5226-5233.

tl;dr Addition of small concentrations of Mg(HMDS)2 reduces cathodic current associated with Al deposition in the magnesium aluminum chloride complex (MACC) electrolyte, resulting in a conditioned electrolyte on cycle 1. Such a drastic change in the electrochemistry from addition of a very small concentration of Mg(HMDS)2 suggests that the effect is localized to the electrode-electrolyte interface. Electrochemical experiments suggest that addition of Mg(HMDS)2 not only scavenges water, but also causes a secondary effect that we hypothesize is the formation of free Cl-.

21. “Dense Garnet-Type Electrolyte with Coarse Grains for Improved Air Stability and Ionic Conductivity”

Xiaomei Zeng, Andrew J. Martinolich, Kimberly A. See, and Katherine T. Faber

J. Energy Storage 2020, 27, 101128.

20. “Effect of the Electrolyte Solvent on Redox Processes in Mg-S Batteries”

Sarah C. Bevilacqua, Kim H. Pham, and Kimberly A. See,

Inorg. Chem. 2019, 58, 10472-10482.

tl;dr Mg deposition and stripping is demonstrated with a MgCl2  and AlCl3  electrolyte in a variety of ethereal solvents. The new electrolyte systems are used to systematically study solvent effects on sulfur electroreduction in Mg-S cells. Irreversible sulfur reduction is observed when Mg-S cells are prepared with the electrolytes, and the peak potential is found to vary with solvent suggesting that the electrolyte is active in the reduction mechanism.

19. “Solid State Divalent Ion Conductivity in ZnPS3”

Andrew J. Martinolich, Cheng-Wei Lee, I-Te Lu, Sarah C. Bevilacqua, Molleigh B. Preefer, Marco Bernardi, André Schleife, and Kimberly A. See,

Chem. Mater. 2019, 31, 3652-3661.

tl;dr ZnPS3 supports divalent ion conduction, Zn2+, with low activation energies (350 meV). Zn2+ diffuses via a vacancy-mediated mechanism within the metal layer. The transition state that defines the activation energy along the Zn2+ diffusion pathway involves an extension of the P-P-S bond angle in [P2S6]4-, pushing S into the van der Waals gap.

Please reload

prior to Caltech

18. "Elucidating Zn and Mg Electrodeposition Mechanisms in Nonaqueous Electrolytes for Next-Generation Metal Batteries"

Kim Ta, Kimberly A. See, and Andrew A. Gewirth,

J. Phys. Chem. C 2018, 122, 13790-13796.

17. "The Effect of the Hydrofluoroether Cosolvent Structure in Acetonitrile-based Solvate Electrolytes on Li+ Solvation Structure and Li‒S Battery Performance"

Minjeong Shin, Heng-Liang Wu, Badri Narayanan, Kimberly A. See, Rajeev S. Assary, Lingyang Zhu, Richard T. Haasch, Shuo Zhang, Zhengcheng Zhang, Larry A. Curtiss, and Andrew A. Gewirth,

ACS Appl. Mater. Interfaces 2017, 9, 39357-39370.

16. "Effect of Concentration on the Electrochemistry and Speciation of the Magnesium Aluminum Chloride Complex Electrolyte Solution,”

Kimberly A. See, Yao-Min Liu, Yeyoung Ha, Christopher J. Barile and Andrew A. Gewirth,

ACS Appl. Mater. Interfaces 2017, 9, 35729-35739.

15. "Reversible Capacity of Carbon Additives at Low Potentials: Caveats for Testing Alternative Anode Materials,”

Kimberly A. See, Margaret A. Lumley, Galen D. Stucky, Clare P. Grey, and Ram Seshadri,

J. Electrochem. Soc. 2017, 164, A327-A333.

14. “Thiol-Based Electrolyte Additives for High-Performance Lithium-Sulfur Batteries,”

Heng-Liang Wu, Minjeong Shin, Yao-Min Liu, Kimberly A. See, and Andrew A. Gewirth,

Nano Energy 2017, 32, 50-58.

13. “Effect of Hydrofluoroether Cosolvent Addition on Li Solvation in Acetonitrile-Based Solvate Electrolytes and Its Influence on S Reduction in a Li-S Battery,”

Kimberly A. See, Heng-Liang Wu, Kah Chun Lau, Mingjeong Shin, Lei Cheng, Mahalingam Balasubramanian, Kevin G. Gallagher, Larry A. Curtiss, and Andrew A. Gewirth,

ACS Appl. Mater. Interfaces 2016, 8, 34360-34371.

12. “Practical Stability Limits of Magnesium Electrolytes,”

Albert L. Lipson, Sang-Don Han, Baofei Pan, Kimberly A. See, Andrew A. Gewirth, Chen Liao, John T. Vaughey, and Brian J. Ingram,

J. Electrochem. Soc. 2016, 163, A2253-A2257.

11. “The Interplay of Al and Mg Speciation in Advanced Mg Battery Electrolyte Solutions,”

Kimberly A. See, Karena W. Chapman, Lingyang Zhu, Kamila M. Wiaderek, Olaf J. Borkiewicz, Christopher J. Barile, Peter J. Chupas, and Andrew A. Gewirth,

J. Am. Chem. Soc. 2016, 138, 328-337.

10. “Nanostructured Mn-Doped V2O5 Cathode Material Fabricated from Layered Vanadium Jarosite,”

Hongmei Zeng, Deyu Liu, Yichi Zhang, Kimberly A. See, Young-Si Jun, Guang Wu, Jeffrey A. Gerbec, Xiulei Ji, and Galen D. Stucky,

Chem. Mater. 2015, 27, 7331–7336.

9. “Lithium Charge Storage Mechanisms for Cross-Linked Triazine Networks and Their Porous Carbon Derivatives,”

Kimberly A. See, Stephan Hug, Katharina Schwinghammer, Margaret A. Lumley, Yonghao Zheng, Jaya M. Nolt, Galen D. Stucky, Fred Wudl, Bettina V. Lotsch, and Ram Seshadri,

Chem. Mater. 2015, 27, 3821-3829.

8. “X-ray Diffraction Computed Tomography for Structural Analysis of Electrode Materials in Batteries,”

Kristin M. Ø. Jensen, Xiaohao Yang, Josefa Vidal Laveda, Wolfgang G. Zeier, Kimberly A. See, Marco D. Michiel, Brent C. Melot, Serena A. Corr, and Simon J. L. Billinge,

J. Electrochem. Soc. 2015, 162, A1310-A1314.

7. “Ab initio Structure Search and in situ 7Li NMR Studies of Discharge Products in the Li-S Battery System,”

Kimberly A. See, Michal Leskes, John M. Griffin, Sylvia Britto, Peter D. Matthews, Alexandra Emly, Anton Van der Ven, Dominic S. Wright, Andrew J. Morris, Clare P. Grey, and Ram Seshadri,

J. Am. Chem. Soc. 2014, 136, 16368-16377.

6. “A Stable Polyaniline-Benzoquinone-Hydroquinone Supercapacitor,”

David Vonlanthen, Pavel Lazarev, Kimberly A. See, Fred Wudl, and Alan J. Heeger,

Adv. Mater. 2014, 26, 5095-5100.

5. “Sulfur-functionalized Mesoporous Carbons as Sulfur Hosts in Li-S Batteries: Increasing the Affinity of Polysulfide Intermediates to Enhance Performance,”

Kimberly A. See, Young-Si Jun, Jeffrey A. Gerbec, Johannes K. Sprafke, Fred Wudl, Galen D. Stucky, and Ram Seshadri,

ACS Appl. Mater. Interfaces 2014, 6, 10908-10916.

4. “Sulfur Infiltrated Mesoporous Graphene-Silica Composite as a Polysulfide Retaining Cathode Material for Lithium-Sulfur Batteries,”

Kyoung Hwan Kim, Young-Si Jun, Jeffrey A. Gerbec, Kimberly A. See, Galen D. Stucky, Hee-Tae Jung,

Carbon 2014, 69, 543-551.

3. “Bimodal Mesoporous Titanium Nitride/Carbon Microfibers as Efficient and Stable Electrocatalysts for Li-O2 Batteries,”

Jihee Park, Young-Si Jun, Woo-ram Lee, Jeffrey A. Gerbec, Kimberly A. See, and Galen D. Stucky,

Chem. Mater. 2013, 25, 3779-3781.

2. “A High Capacity Calcium Primary Cell Based on the Ca-S System,”

Kimberly A. See, Jeffrey A. Gerbec, Young-Si Jun, Fred Wudl, Galen D. Stucky, and Ram Seshadri,

Adv. Energy Mater. 2013, 8, 1056-1061.

1. “Mesostructured Block Copolymer Nanoparticles: Versatile Templates for Hybrid Inorganic/Organic Nanostructures,”

Luke A. Connal, Nathaniel A. Lynd, Maxwell J. Robb, Kimberly A. See, Se Gyu Jang, Jason M. Spruell, and Craig J. Hawker,

Chem. Mater. 2012, 24, 4036-4042.

Please reload

bottom of page