electrochemical energy storage



The battery technology that currently dominates rechargeable energy storage applications, especially in mobile applications, is the Li-ion battery. In conventional Li-ion batteries, Li-ions shuttle, or intercalate, into solid-state host lattices at two electrodes, an anode and cathode. Upon discharge, the removal of Li   from the anode is accompanied by oxidation of the host lattice to satisfy charge neutrality. The electrolyte separating the anode from the cathode is ionically conductive but electronically insulating forcing the freed electrons to conduct from the anode to the cathode through an external circuit, thus providing electrical energy when the circuit is closed. The opposite process occurs at the cathode where Li   intercalation is accompanied by reduction of the host lattice. Although this process is very reversible, the capacity of Li-ion cells is inherently limited by the bulky host lattices required to support intercalation processes.

Significant opportunities for new battery technologies lie in alternative chemistries that go beyond conventional intercalation mechanisms. We are interested in exploring next-generation electrochemical energy storage systems using a bottom-up approach. By first understanding the fundamental limitations and developing the structure-property relationships governing cell performance, we develop rules that inform the design of next-generation energy storage chemistries.

A conventional Li-ion battery is made up of a graphite anode, LiCoO2 cathode, and an electrolyte composed of a combination of carbonate solvents with inorganic Li salts.

current research themes

synthetic control across length-scales for advancing rechargeables


We are excited to be part of the Synthetic Control Across Length-Scales for Advancing Rechargeables (SCALAR) team! SCALAR is an Energy Frontier Research Center (EFRC) made up of 17 PIs from 6 universities and institutions. 


To design materials, interfaces, and architectures that revolutionize the performance of energy storage systems by dramatically expanding the range of materials systems and chemistries that can be employed in next generation batteries.


research plan

The SCALAR center aims to rethink battery materials to take advantage of a much broader set of reactions and materials than traditional transition metal cation redox approaches. This is combined with new methods to control and characterize architectures and interfaces with the goal of bridging atomistic and nanometer length-scales in the quest to improve cycling stability and electron and ion transport over broad working ranges.


Learn more about our research and the team here: http://www.chem.ucla.edu/scalar/

  • Facebook Social Icon
  • Twitter Social Icon

© The See Group | California Institute of Technology

All Rights Reserved.